Regression calibration in semiparametric accelerated failure time models.

نویسندگان

  • Menggang Yu
  • Bin Nan
چکیده

In large cohort studies, it often happens that some covariates are expensive to measure and hence only measured on a validation set. On the other hand, relatively cheap but error-prone measurements of the covariates are available for all subjects. Regression calibration (RC) estimation method (Prentice, 1982, Biometrika 69, 331-342) is a popular method for analyzing such data and has been applied to the Cox model by Wang et al. (1997, Biometrics 53, 131-145) under normal measurement error and rare disease assumptions. In this article, we consider the RC estimation method for the semiparametric accelerated failure time model with covariates subject to measurement error. Asymptotic properties of the proposed method are investigated under a two-phase sampling scheme for validation data that are selected via stratified random sampling, resulting in neither independent nor identically distributed observations. We show that the estimates converge to some well-defined parameters. In particular, unbiased estimation is feasible under additive normal measurement error models for normal covariates and under Berkson error models. The proposed method performs well in finite-sample simulation studies. We also apply the proposed method to a depression mortality study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Semiparametric Transformation Model Incorporating Frailties

We describe a Bayesian semiparametric (failure time) transformation model for which an unknown monotone transformation of failure times is assumed linearly dependent on observed covariates with an unspecified error distribution. The two unknowns: the monotone transformation and error distribution are assigned prior distributions with large supports. Our class of regression model includes the pr...

متن کامل

Interval Censored Survival Data : A Review of Recent

We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...

متن کامل

Interval Censored Survival Data A Review of Recent Progress

We review estimation in interval censoring models including nonparametric esti mation of a distribution function and estimation of regression models In the non parametric setting we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators In the regression setting we focus on the proportional hazards the proportional odds and the accelerated...

متن کامل

Rank Regression Analysis of Multivariate Failure Time Data Based on Marginal Linear Models

Multivariate failure time data arises when each study subject can potentially experience several types of failures or recurrences of a certain phenomenon, or when failure times are sampled in clusters. We formulate the marginal distributions of such multivariate data with semiparametric accelerated failure time models (i.e. linear regression models for log-transformed failure times with arbitra...

متن کامل

Bayesian Semiparametric Regression for Median Residual Life

With survival data there is often interest not only in the survival time distribution but also in the residual survival time distribution. In fact, regression models to explain residual survival time might be desired. Building upon recent work of Kottas and Gelfand (2001) we formulate a semiparametric median residual life regression model induced by a semiparametric accelerated failure time reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 66 2  شماره 

صفحات  -

تاریخ انتشار 2010